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Topological physics in the standard model and beyond

Richard J. Hill

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510, USA

Abstract. Topological interactions are an essential ingredient for building consistent low-energy
theories of fermions, gauge fields and Nambu-Goldstone bosons in the absence of explicit UV
completions, such as in Little Higgs theories. These interactions are also a probe of UV completion
physics that may be out of direct experimental reach. The technology of topological, or Wess-
Zumino-Witten interactions is described, using explicit examples in the standard model and in
Little Higgs models. The construction of a simple topological action on SU(3)/SU(2) is described.
Inconsistencies in some popular Little Higgs models are pointed out.

PACS. 11.30.Rd Chiral symmetries – 12.60.Fr Extensions of electroweak Higgs sector

1 Introduction

Topological interactions and anomaly physics are of
basic importance in the standard model, in model-
building applications beyond the standard model, and
in formal studies of quantum field theory.

However, the methods used to study these interac-
tions are not part of the everyday theoretical toolkit.
This may be due partly to the perceived complexity of
the mathematics involved, and partly to the perceived
scarcity of relevant physics applications. My goal in
this talk is to help dispel these notions, and to point
out some new applications of these tools.

Much of this perceived complexity is associated
with ancient notions of current algebra that still per-
vade many discussions of anomalies. Section 2 reviews
some simple processes in the standard model from a
modern effective field theory point of view. To illus-
trate the mathematical simplicity of this physics, a
new and especially simple topological construction for
SU(3)/SU(2) is described in Section 3; the most com-
plicated mathematical object needed here is a sphere.
Section 4 describes the application of these tools to Lit-
tle Higgs models, pointing out some confusions regard-
ing gauge invariance, anomalies, and spurious parities
that have afflicted the literature. Section 5 concludes
by mentioning some more formal applications of the
technology that was developed to study Little Higgs
models.

2 Standard model examples

There are a number of applications, both new and old,
of topological interactions in the standard model. We
mention three examples here.

2.1 π0 → γγ and the QCD chiral lagrangian

Textbook treatments [1] of the famous π0 → γγ decay
may lead the uninitiated reader to believe that com-
puting anomalous divergences of axial vector currents,
and working through subtle regularization schemes,
are prerequisite to making rigorous predictions. In mod-
ern effective field theory language, the situation is much
simpler. Once we know the fields in our effective the-
ory (a matrix field U(x) taking values in SU(nf ) ×
SU(nf )/SU(nf) = SU(nf ), with nf the number of
quark flavors) and the symmetries of our effective the-
ory (global SU(nf ) × SU(nf)), we can write down
the most general operator made from these fields, and
obeying these symmetries. One such operator—the Wess
Zumino Witten (WZW) term [2,3]—happens to have
the remarkable property that it uniquely predicts the
π0 → γγ rate. In detail, when expanded onto the rel-
evant fields, this interaction reads [4,5,6]

ΓWZW = − Nc

96π2fπ

∫

d4x ǫµνρσπ0Fµν Fρσ , (1)

where Nc = 3 is the number of quark colors, and
fπ ≈ 93 MeV is the pion decay constant. From this
interaction Lagrangian, we can simply write down the
appropriate Feynman diagram and compute the decay
rate.

2.2 Weak currents in the QCD chiral lagrangian

Although processes like π0 → γγ involving just pseu-
doscalars and photons provide the most familiar ex-
amples of gauged WZW terms, the low-energy stan-
dard model also contains the charged and neutral weak
currents, vector mesons coupling to baryon number
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and isospin, and the hypothetical axion. Incorporat-
ing these ingredients into the WZW structure leads to
interesting effects. An example is the neutrino-photon
interaction mediated by [7]

ΓWZW =
Nc

48π2

egωg2

cos θW

∫

d4x ǫµνρσωµZνFρσ , (2)

where ω is the isoscalar vector meson coupling to baryon
number. The interaction (2) will lead to the detection
mode ν + N → ν + N + γ in laboratory neutrino ex-
periments; and to the cooling mechanism γ → νν̄ in
neutron stars. [7].

2.3 WZW for the standard model Higgs

As a prelude to applications in Little Higgs models, it
is instructive to consider the WZW term for the Higgs
boson in the standard model. Consider, for example,
the situation where the third generation (t, b) quarks
are integrated out, leaving an effective Lagrangian in-
volving just the (ντ , τ) leptons, and the complete set
of first and second generation fermions. We would like
to think that the result is a consistent and predictive
effective field theory. In particular, the low-energy the-
ory should be gauge invariant under SU(2)L ×U(1)Y .
Naively, it appears that such an effective theory is not
possible—an inspection of triangle diagrams for the
remaining fermions shows that there are uncancelled
gauge anomalies from the third-generation leptons.

Of course, the resolution to this paradox is clear—
we’ve left out an operator. At low energies, the only
other matter fields in the theory besides the fermions
are the Goldstone modes of the Higgs, represented by
a field φ in SU(2)×U(1)/U(1) ∼= S3 (S3 is the three-
sphere):

φ = exp

[

i

v

(

0 g+

g− g0

)] (

0
v

)

. (3)

This field transforms as an electroweak doublet:

δφ = i(ǫ + ǫ′)φ , (4)

where ǫ and ǫ′ generate SU(2)L and U(1)Y . What op-
erators can we build out of φ ?

It turns out that up to normalization, there is an
essentially unique operator that can be built out of φ
and the gauge bosons W , B that: (i) is globally in-
variant under SU(2)× U(1); and (ii) generates a con-
sistent anomaly in the spontaneously broken gener-
ators. As outlined in Section 3, the explicit form of
this operator can be obtained from a topological con-
struction. Explicit calculation shows that under a gen-
eral SU(2)×U(1) gauge transformation, the operator
produces an anomaly proportional to the uncancelled
lepton anomaly. Enforcing gauge invariance (that is,
anomaly cancellation) then fixes the overall normal-
ization factor. [8]

This example illustrates an important point in build-
ing consistent models of fermions, gauge fields and
pNGB’s, for example Little Higgs models. In order to

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Fig. 1. Two possibilities for the surface whose boundary
is the image of Φ. The WZW action is given by the area of
this surface.

enforce gauge invariance, we must be able to find op-
erators made out of the fields in our theory that cancel
any left-over gauge anomalies from explicit fermion de-
grees of freedom. Such a construction is guaranteed in
the present case—we started with the consistent stan-
dard model, and by integrating out heavy degrees of
freedom we should end up with a consistent low-energy
theory. In bottom-up approaches where we don’t know
the UV theory, the possibility of anomaly cancellation
is not guaranteed. Additional degrees of freedom might
be necessary for consistency.

3 The simplest WZW term

I describe here the analog of Witten’s construction [3]
on SU(3)×SU(3)/SU(3) ∼= SU(3), but with the sim-
pler topology of SU(3)/SU(2) ∼= S5. This was outlined
in [9] and details are presented in [10]. 1 The topo-
logical complexity in the former case comes from the
need to identify a five-sphere inside of SU(3). Since
the field space in the latter case is a five sphere, the
WZW term for SU(3)/SU(2) has a particularly sim-
ple construction. Note that just as reducing SU(3) ×
SU(3)/SU(3) to SU(2) × SU(2)/SU(2) describes the
pion sector in the QCD chiral Lagrangian, so reducing
SU(3) × U(1)/SU(2) × U(1) to SU(2) × U(1)/U(1)
describes the SM Higgs sector. 2

Fields on SU(3)/SU(2) = S5 are represented by a
vector Φ(x) = (φ1 + iφ2, φ3 + iφ4, φ5 + iφ6)T with

Φ†Φ =
6

∑

i=1

(φi)2 = 1 . (5)

What are the globally SU(3) invariant operators that
we can write in terms of Φ ?

Let us focus on the ungauged action. There is of
course the “ordinary” class of operators, such as the
kinetic energy term

LK = ∂µΦ†∂µΦ + . . . . (6)

1 Including the U(1) factor in SU(3) × U(1)/SU(2) ×
U(1) is straightforward and for simplicity it is not included
here.

2 In fact additional interesting subtleties come up in this
case - it turns out that the reduction is only possible for
an even number of “colors”.
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These operators are manifestly four-dimensional, local,
and globally SU(3) invariant.

Another operator that is not so obvious is con-
structed as follows. Note that x 7→ Φ(x) is a mapping
from spacetime 3 into S5. Let the action be propor-
tional to the area bounded by this mapping. Explicitly,
we have

ΓWZW (Φ) =
N

π2

∫

M5

ω , (7)

where M5 is the surface with the image of spacetime
as its boundary, and

ω =
−i

8
ǫABCDEΦ†∂AΦ∂BΦ†∂CΦ∂DΦ†∂EΦ . (8)

is the volume element (=surface area) on the sphere.
In fact, as shown in Figure 1, there are two different
surfaces with the image of spacetime as their bound-
ary; for consistency, eiΓ should be independent of this
choice. Since the difference is proportional to the total
volume, 4 setting this difference equal to a multiple of
2π yields the displayed quantization condition, with N
an even integer.

Having constructed the WZW term, it is straight-
forward to check that it is: (i) four dimensional (given
Φ(x) defined on 4-d spacetime, we can compute Γ (φ));
(ii) local (for a small change in Φ(x), the area defin-
ing the action changes by a small amount); and (iii)
globally SU(3) invariant (SU(3) acts as a subgroup of
rotations on the sphere, and the area is rotationally
invariant). The action can be coupled to gauge fields
for the SU(3) generators, in which case it is still glob-
ally invariant, but generates an anomaly under local
SU(3) transformations. This anomaly corresponds to
that of N left-handed fermions with global SU(3) fla-
vor symmetry.

This construction can be formalized in terms of
the homotopy groups describing the topology of the
sphere: 5 π4(S

5) = 0, meaning that the construction
is possible (for a given Φ(x), there is a surface with
the image of Φ(x) as its boundary); and π5(S

5) = Z,
meaning that the construction is nontrivial (the dif-
ference of the mappings in Figure 1 wraps the sphere
nontrivially, and the action must be quantized). This
simple construction on the sphere carries over to more
complicated spaces such as SU(n) × SU(n)/SU(n) =
SU(n), SU(n)/SO(n) and SU(2n)/Sp(2n).

4 Little Higgs models

The starting point for so-called “composite” [12] and
“Little” [13,14] Higgs models is summarized by the
formula for one-loop radiative corrections to pNGB

3 To be precise, we consider Euclidean spacetime com-
pactified onto S4.

4 Note the minus sign coming from the relative orienta-
tion of the two surfaces. The total volume of S5 is π3.

5 An equivalent statement can be made in terms of
de-Rham cohomology describing the classes of differential
forms that can be defined on the sphere [11].

masses. Suppose that we weakly gauge a collection of
symmetry generators,

Λ = ΛV + ΛA , (9)

where ΛV and ΛA are the unbroken and broken com-
ponents of the generator. 6 Then the mass-matrix for
pNGB’s is [15]

m2
ab = M2

∑

Λ

Tr

{

[ΛV , [ΛV , taA]] tbA−[ΛA, [ΛA, taA]] tbA

}

,

(10)
where M2 is a nonperturbative mass scale set by un-
derlying strong dynamics. If we suppose that an axial
generator is gauged strongly enough so that m2 < 0 for
the physical Higgs, then electroweak symmetry will be
broken “by vacuum misalignment” [12]. Alternatively,
suppose that the gauged generators are arranged so
that, for the physical Higgs, m2 = 0 through one-loop
corrections. Electroweak symmetry can then be bro-
ken by higher-order loop corrections, and contributions
from the top-quark sector [13,16]. Assuming that the
full electroweak symmetry breaking potential can be
tuned or engineered in a plausible way, these models
give a mechanism for a weakly coupled Higgs boson to
leak down to the electroweak scale, along with extra
particles such as heavy partners of the top quark, and
partners of the SU(2)L×U(1)Y gauge bosons, that are
involved in stabilising the Higgs mass against radiative
corrections.

The anomaly structure of such theories provides
an important probe of the underyling UV completion
physics. The situation is analogous to probing QCD if
we only had access to sub-GeV experiments. Anomaly
physics enters in two ways. First, there are consis-
tency conditions on the low-energy theory. For exam-
ple, suppose we were able to deduce the electroweak
gauge structure of a complete first-generation stan-
dard model—the electron and its neutrino (νe, e), and
the pions, coupled to SU(2)L × U(1)Y . For a consis-
tent gauge theory, we would find that the only pos-
sible value of the coefficient multiplying the WZW
term is Nc = 3. This provides an important clue to
the UV completion, namely a theory of fundamental
SU(Nc = 3) quarks. We would also know that inter-
actions such as π0 → γγ are not only possible in some
UV completions, but required in any UV completion.

Anomaly physics can also enter in a second way.
Focusing just on the pseudoscalar + gauge boson sec-
tor, we can look for reactions such as π0 → γγ, and
count Nc = 3. 7 We then know that whatever other
light fermion content exists must be consistent with
this value.

Let us look at a few simple examples to see how
these arguments can be used to construct consistent
Little Higgs models, and to constrain their UV com-
pletions.

6 The subscripts denote “vector” and “axial” compo-
nents in analogy to QCD-like symmetry-breaking patterns.

7 We of course need an independent measurement of fπ .
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4.1 SU(3)/SU(2) Little Higgs

Consider first the implementation of the Little Higgs
idea based on two copies of SU(3) × U(1)/SU(2) ×
U(1), introduced by Kaplan and Schmaltz [17,18]. The
model is described by two distinct “condensate” fields
Φ1, Φ2, coupled to a single copy of SU(3)W × U(1)X

gauge fields.
When three fermion generations are present, and

treated on the same footing, there are uncancelled
SU(3)3W , SU(3)2W × U(1)X and U(1)3X gauge anoma-
lies (“Model 1” of [18]). This is not necessarily a bad
thing. In fact, if we let N1 and N2 be the coefficients
of the WZW terms for the Φ1 and Φ2 sectors [9], then
we can enforce anomaly cancellation as long as

N1 + N2 = 12 , (11)

or more generally N1+N2 = 4Ng, with Ng the number
of generations. Without adding additional fields into
the low-energy theory, there is no freedom to speculate
on the absence of the WZW term. Any candidate UV
completion of this model must have exactly six “col-
ors” per sector. 8 This is like the first application to
the standard model discussed in the introduction to
this section—before doing any measurements, consis-
tency places tight constraints on the form of the UV
completion.

By assigning different quantum numbers to the three
generations, it is possible to cancel anomalies of the
fermions amongst themselves (“Model 2” of [18]). In
this case, we must have

N1 = −N2 . (12)

As we saw in Section 3, the “number of colors” must
be even, so that we have the possibilities N1 = −N2 =
0, 2, 4, . . . . An especially interesting scenario is where
the two sectors are identical apart from the chirality
of the underlying condensates, represented by the rel-
ative sign in front of the WZW term. Then apart from
Yukawa couplings to fermions, an exact exchange sym-
metry exists between the sectors, and is broken only
by topological interactions. In terms of the physical
Higgs and W boson, and the extra isosinglet scalar
field η and isodoublet vector field Cµ appearing in the
model, we have [9]

ΓWZW =

∫

d4x ǫµνρσ

{

−2N

8π2
√

3F
ηTr

[

Fµν
W F ρσ

W

]

+
2N

16π2F

[

DµH†F νρ
W Cσ + h.c.

]

+ . . .

}

. (13)

This is like the second application to the standard
model— if we can identify and measure an anomaly-
mediated interaction, we acquire a discrete and pow-
erful probe of the UV completion.

8 For example, SU(3)/SU(2) can be embedded inside
SU(3)×SU(3)/SU(3), and a potential UV completion con-
sists of two triplets of “techniquarks” transforming under
6 and 6̄ of SU(6). [9]

This example also illustrates a deficiency of the
“moose” language of links and sites that is sometimes
used to describe Little Higgs models. In this language
it appears obvious that when the couplings in both sec-
tors are identical, the reflection Φ1 ↔ Φ2 must be an
exact symmetry. This led to the interesting proposal
of an exact “T ” parity [19] reflection symmetry, with
implications for dark matter and missing energy col-
lider signatures [20,21]. However, the parity is broken
once anomalies are taken into account, since ΓWZW in
(13) is odd under this exchange. These considerations
apply to models invoking T parity as a reflection sym-
metry in [SU(3) × SU(3)/SU(3)]4 [19]. Similarly, the
T -parity, or “Goldstone boson parity” appearing in the
kinetic terms of symmetric-space cosets like SU(3) ×
SU(3)/SU(3), SU(5)/SO(5) and SU(6)/Sp(6) is vio-
lated by anomalies (in the QCD chiral Lagrangian π0

is odd under T parity, the photon is even, yet π0 → γγ
is allowed!). 9

4.2 SU(5)/SO(5) Little Higgs

The usefulness of anomaly constraints apply more gen-
erally. Here we discuss briefly two implementations of
the Little Higgs idea based on SU(5)/SO(5).

In the so-called “Littlest Higgs without T parity”
model [23], the extended-SM fermions couple only to
one of the two gauged SU(2) groups. This gauging can
be arranged to be anomaly free, however two subtle
problems arise. First, the fact that there is no left-
over anomaly tells us that without extending the low-
energy theory, the coefficient of the WZW term must
be zero. In the absence of additional fields, this rules
out a technicolor-like UV completion [23] (either fun-
damental or composite fermions) that could have ex-
plained the origin of SU(5)/SO(5) symmetry break-
ing. A more detailed study reveals another difficulty [24].
The naive basis of operators in the theory specified
by this gauging is not closed under renormalization.10

This limits the predictive power of the theory, even
when restricted to low-energy observables.

In the so-called “Littlest Higgs with T parity” [25,
20], apart from the breaking of T parity by anomalies,
we also run into problems of consistency. The fermion
content is anomalous (uncancelled SU(2)2 ×U(1) and
U(1)3 anomalies with the quantum numbers in [25,
20]). The form of these anomalies is such that they
cannot be cancelled by the globally SU(5) invariant
WZW term, indicating that additional structure is re-
quired for gauge invariance. As a low energy theory,
the model is inconsistent!

9 Some prospects for identifying an alternate “T” parity
were considered in [22]. This will generically require the
existence or introduction of multiple condensate fields.
10 For example, both ψ̄ (i∂/ + V/ + A/ )ψ, and
ψ̄U (i∂/ + V/ −A/ )U†ψ are gauge invariant kinetic
terms for the fermions. Here V and A denote broken
and unbroken components of the gauge field, and U is a
unitary matrix of pNGB’s transforming as U → eiǫUe−iǫ̃,
where the tilde changes the sign of broken generators.
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Concentrating just on the scalar + gauge sector, it
is possible to look for anomaly-mediated interactions
that could guide us to a more complete model. Some
work along these lines is presented in [27].

4.3 Little Higgs Summary

It is essential in any low-energy effective theory to
be able to write down the most general operator con-
sistent with an assumed field content and symmetry.
This is especially important in bottom-up models such
as the Little Higgs, where no particular UV comple-
tion is specified. Topological interactions represent one
such class of operators. The anomaly structure en-
coded by these interactions is truly an IR probe of
UV physics, providing consistency conditions on the
low-energy theory, and constraints that any proposed
UV completion must obey [26].

A perplexing folklore has developed in the Little
Higgs literature, whereby gauge invariance of the low-
energy theory is considered optional. This is some-
times justified by the misleading argument that ex-
tra heavy fermions might exist that cancel anomalies.
Of course, if the heavy fermions are truly heavy, they
should be integrated out of the low-energy theory, gen-
erating new operators that maintain gauge invariance;
if they are not heavy, then they should be present in
the low-energy theory, again maintaining gauge invari-
ance. Such fermions will in general either be directly
observable if they are light; or break global symme-
tries and affect the dynamics of electroweak symmetry
breaking if they are heavy and transform under an in-
complete representation of the global symmetry group;
or be a candidate to identify with underlying “techni-
quarks” of strong dynamics if they transform under
the complete representation of the global symmetry.

Far from being a nuisance, anomalies and consis-
tency conditions of the Little Higgs are one of the few
handles we have to constrain the low-energy theory,
and to probe UV completion physics that is out of
direct experimental reach.

5 Conclusion

We can apply the technology developed for phenomeno-
logical applications in the standard model and Little
Higgs theories to more general problems. For instance,
in the study of formal large-N equivalences between
different fermion field theories [28], or between four-
dimensional field theories and their conjectured holo-
graphic duals [29], the discrete nature of the WZW
term can provide exact relations that are independent
of N , or that are independent of wavefunction profiles
in the extra dimension. As a practical matter, these
equivalences can be used as an efficient calculational
tool. For instance, the WZW term constructed directly
on SU(n)/SO(n) [30] can be derived immediately, in-
cluding general gauge fields, from the WZW term for
SU(n) × SU(n)/SU(n) [9].
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